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Abstract

In this paper, the Airfoil polynomials for solving the second order integro-differential equa-
tion with a singular kernel is considered. The collocation method is developed to obtain an
approximate solution of the equation. We present an error analysis and conclude by providing
numerical tests to verify our results.
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1 Introduction

The appearance of integral equations can be traced back at least to the discovery of the integral
theorem by Fourier. Indeed, the recasting of Ivar Fredholm’s theory of linear integral equations
of the second kind by David Hilbert and Erhard Schmidt in the first decade of the last century
formed an important foundation for the development of modern mathematics.

Integral equations method appears in many models describing various phenomena in several
fields of applied science and engineering such as: economics, fluid dynamics, electrodynamics,
elasticity, fracture mechanics, biology, scattering of surface water waves, other scientific fields and
the latest high technology. Several techniques have been developed for solving such equations
including: Legendre-Galerkin method [12], shifted Legendre projection method [5], Piecewise
linear approximation and Polynomial approximation [8], B-spline method [9], Meshless Method
[1], iterative methods [2], minimization and regularization techniques [3]. The above numerical
methods are accurate for solving regular integral equations and also provide satisfactory numeri-
cal results. Unfortunately, they lose their effectiveness in the case of integro-differential equations
with singular kernel.

Singular integro-differential equations are difficult to solve analytically, despite this complex-
ity, this kind of equations has a great importance and also still attracting the interest of the scientific
community. Indeed, manyworks have been considered in the previous equations: the uniqueness
of the solution [13], integral equations with logarithmic and Cauchy kernel [4], the first order sin-
gular integro-differential equationswith logarithmic kernels [10] and the Cauchy kernel [11]. Nu-
merical computation is an essential phase that uses multiple numerical methods to approximate
the solution. One of the best adopted method for solving singular integro-differential equations
is the projection method by using Airfoil polynomials, its advantage is to reduce the dimension
of the equation and instead of solving the equation, we solve their equivalent system of linear al-
gebraic equations that can be uniquely solved to obtain the coefficients. The authors presented in
[10] the projectionmethod usingAirfoil polynomials for solving the first order integro-differential
equation with logarithmic kernel and the Cauchy kernel in [11], that provides a higher accuracy
than the Galerkin method. We follow those works and extend the techniques to the second order
integro-differential equation with logarithmic kernel.

The following second order integro-differential equation is considered with a logarithmic ker-
nel

x′′(s) = y(s)−
∫ 1

−1
ln |t− s|x(t)dt, −1 ≤ s ≤ 1; (1)

x′(−1) = x(1) = 0,

where x(s) is an unknown function to be determine and y(s) is the source term.

The airfoil polynomial tn of the first kind is giving as follows:

tn(s) =
cos[(n+ 1

2 ) arccos(s)]

cos( 1
2 arccos(s))

.

The airfoil polynomial un of the second kind is giving as follows:

un(s) =
sin[(n+ 1

2 ) arccos(s)]

sin( 1
2 arccos(s))

.
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The paper is organized as follows. In Section 2, the discretization of the integro-differential
equation by the airfoil polynomials is presented. In Section 3, the estimation of the errors were
obtained on the classical Sobolev spaces. Section 4 presents some numerical examples to show the
efficiency of our method. Section 5 concludes the paper.

2 The Discretization of the Integro-differential Equation

In this section, Eq(1) is transformed by Airfoil polynomials of the first kind, and here the
following formulas [6] are considered as:

(1− s)t′i(s) = (i+
1

2
)ui(s)−

1

2
ti(s),

(1− s2)t′′i (s) + (1− 2s)t′i(s) + i(i− 1)ui(s) = 0,

which implies that

t′′i (s) = − (1− 2s)

(1− s2)

[
(i+ 1

2 )

1 + s
ui(s)−

1

2(1 + s)
ti(s)

]
− i(i− 1)

(1− s2)
ui(s), (2)

and
1

π

∫ 1

−1

√
1 + t

1− t
ti(t)ln|t− s|dt =

{
ui−1−ui(s)
2(1−s2) + ui+ui+1(s)

2(i+1) (i 6= 0),

−ln2− s (i = 0).
(3)

Define the approximate solution of Eq(1) as:

xn(s) = w(s)

n∑
i=0

αiti(s),

where

w(s) =

√
1 + s

1− s
.

Then, Eq(1) takes the form:

x′′n(s) +

∫ 1

−1
ln|t− s|xn(t)dt = y(s). (4)

Let Γ = {sj = − cos(2j+1)
2n+3 , j = 0, · · · , n} be a set of n+ 1 collocation points which are the zeros

of un+1. By substituting (2) and (3) in (4) one obtain the following linear system:

Av = b, (5)

where (ai,j)0≤i,j≤n are the elements of Awhich are given as:

a0,j = w′′(sj)t0(sj) + w′(sj)

[
u0(sj)

(1 + sj)
− t0(sj)

(1 + sj)

]
− w(sj)

(1− 2sj)

(1 + sj)

[
u0(sj)− t0(sj)

2

]
+ π(ln2− sj),

ai,j = w′′(sj)ti(sj) + 2w′(sj)

[
(i+ 1

2
)ui(sj)

(1 + sj)
− ti(sj)

2(1 + sj)

]
− w(sj)

(1− 2sj)

(1 + sj)

[
(i+

1

2
)ui(sj)−

1

2
ti(sj)

]
− w(sj)

i(i− 1)

(1− s2j )
ui(sj) + π

[
ui−1(sj)− ui(sj)

2(1− s2j )
+
ui(sj) + ui+1(sj)

2(i+ 1)

]
,
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and the vectors v and b are giving as:

v = (α0, α1, · · · , αn),

b = (y(s0), y(s1), · · · , y(sn)) ,

with

w′(sj) =
( 1
1−sj )

3
2√

sj + 1
,

w′′(sj) =
2sj + 1

(
−sj−1
sj−1 )

3
2 (sj − 1)4

.

As a consequence, the coefficients αi can be obtained by solving the linear system (5).

3 Convergence Analysis

In this section, we search for the condition in which, the norm ‖xn − x‖∞ is vanish. Here, the
previous study will be recalled [11].

Let us define the space:

X = {x ∈ L2[−1, 1], x′′ ∈ L2[−1, 1], x′(−1) = x(1) = 0}.

The integral operator D′ is considered and defined as follows:

(D′ϕ)(s) =

∫ 1

s

∫ τ

−1
ϕ(τ)dτdt, ∀ϕ ∈ X .

Note that, the operator D′ is compact from X into X . For x ∈ X , the setting is introduced as
follows:

Dx(s) = x′′(s),

which verify:
(D′D)x = −x.

Recall that, the integral operator T with logarithmic kernel defined as:

Tφ(s) =

∫ 1

−1
ln|t− s|φ(t)dt,

is bounded from X into itself. Thus, operator equation of Eq(1) is

Dx+ Tx = y. (6)

The approximate equation of Eq(6) is giving as:

Dxn + Txn = y. (7)
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Let us define the projection operator Pn from X into X , which is giving by

Pnφ(τ) =

n∑
i=0

φ(τi)ei(τ),

such that, Ω = {e0, e1, · · · , en} is a set of hat functions in X , with the orthogonality property:

ei(τ`) = δi` =

{
1 if i = `,

0 if i 6= `,

where δi` is the Kronecker delta.

By applying the projection Pn on T . Therefore, Eq(7) becomes

−xn +D′PnTxn = D′y. (8)

Let ρ > 1 and Hρ ([−1, 1],R) be the Sobolev space and ‖ · ‖ρ its norm. (cf. [7])

(I +D′T ) (Hρ ([−1, 1],R)) = Hρ ([−1, 1],R) .

It is known from [7] that, ∃ c > 0, for all x ∈ Hρ([−1, 1],R), then one can obtained that

‖(I − πn)x‖ ≤ cn−ρ‖x‖ρ.

Theorem 3.1. Assume that y ∈ Hρ([−1, 1],R). Hence, the following estimate holds

‖xn − x‖ ≤ C1n
2−ρ‖Tx‖ρ−2.

Proof. From (6) and (8) we get

xn − x = [D′PnTxn −D′y]− [D′Tx−D′y][D′PnT (xn − x) + (D′PnT −D′T )x],

then,

(I −D′PnT )(xn − x) = (D′PnT −D′T )x.

Thus,

xn − x = (I −D′PnT )−1(D′PnT −D′T )x

= (I −D′PnT )−1D′(Pn − I)Tx.

‖xn − x‖ ≤ ‖(I −D′PnT )−1‖ ‖D′‖ ‖(Pn − I)Tx‖
≤ C1n

2−ρ ‖Tx‖ρ−2,

where C1 = c ‖(I −D′PnT )−1‖ ‖D′‖.

Hence, our desire results are obtained.
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4 Numerical Test

In order to test the numerical solution, the projection method by Airfoil polynomials provides
an efficient method for the approximate solution of the singular integro-differential equations.
Here, some numerical examples is presented to show the feasibility of the theoretical results ob-
tained in the above section.

For the numerical calculations, the Gaussian quadrature rule is used to solve the linear system
Ax = b. The errors of the collocation method are given for several values of n.

As to be expected the present method shows a satisfactory accuracy for solving the second
order integro-differential equation with a logarithmic kernel as well as a high efficiency for the
analytical case and also for the computed approximation.

Example 1

Starting with an exact solution to the integro-differential equation (1) as:

x(s) = −s2 − 2s+ 3.

The source term is obtained as:

y(s) = −2− π(−s2 − 2s+ 3)(s+ ln 2)

√
1− s
1 + s

.

Table 1: Error analysis of ‖xn − x‖∞ for Example 1.

n ‖xn − x‖∞
3 5.2× 10−2

30 1.00× 10−2

40 9.41× 10−3

50 3.90× 10−3

60 1.25× 10−3

110 1.15× 10−3

130 6.90× 10−4

150 3.75× 10−4

200 1.31× 10−4

Table 1 shows the error analysis of the method for different n.

Example 2

In the second example the exact solution to the integro-differential equation (1) as:

x(s) = −2s3 + 6s− 4.

The source term is obtained as:

y(s) = −12s− π(−2s3 + 6s− 4)(s+ ln 2)

√
1− s
1 + s

.
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Table 2: Error analysis of ‖xn − x‖∞ for Example 2.

n ‖xn − x‖∞
5 2.59× 10−1

20 2.90× 10−2

25 8.85× 10−3

35 3.40× 10−4

50 5.67× 10−5

90 2.20× 10−5

135 1.13× 10−5

177 5.10× 10−6

185 4.12× 10−6

195 3.17× 10−7

Table 2 shows the error analysis of the method for different n.

5 Conclusion

In this paper, a projectionmethod based onAirfoil polynomials is presented for solving second
order integro-differential equation of second kindwith logarithmic kernel. We have demonstrated
the accuracy of the proposed method through the convergence analysis and the numerical tests.
We believe that the proposed method could be applied to solve other classes of singular integro-
differential equations.
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